5. Steps of constructions:

- (1) draw $\angle AOB = 70^{\circ}$
- (2) With Q as centre and radius equal to 4.5 cm cut on arc R on QB.
- (3) With Q as centre and radius equal to 5 cm cut an arc P on QA.

- (4) At R draw $\angle MRB = \angle AQB$
- (5) At P draw $\angle APN = \angle PQB$ meeting previous $\angle MRB$ at O.

$$\therefore PO = QR = 4.5 \text{ cm}$$

$$OR = QP = 5 \text{ cm}$$

(∵QROP is a parallelogram)

Exercise-12.2

1. Steps of construction:

- (1) Draw BC = 6.2 cm
- (2) With *C* as centre and radius 4.3 cut an arc.
- (3) With *B* as centre and radius 5 cm cut the previous arc at *A*.
- (4) Join AB and AC
 - \therefore $\triangle ABC$ is required triangle.

2. Steps of construction:

- (1) Draw AB = 5 cm
- (2) At A draw $\angle DAB = 60^{\circ}$
- (3) With A as centre and radius 4.3 cm

cut the AD at C.

- (4) Join *BC*
 - \therefore $\triangle ABC$ is required triangle

- (5) With *A* as centre and radius more than half of *AB* cut two arcs.
- (6) With B as centre and same radius cut the previous arcs at P and Q.
- (7) Join *PQ* which is required perpendicular bisector.

3. Steps of construction:

- (1) Draw QR = 4.2 cm
- (2) At Q draw $\angle SQR = 120^{\circ}$
- (3) With *Q* as centre and radius 3.5 cm cut an arc *QS*. Join *PR*
 - \therefore $\triangle PQR$ is required triangle.

4. Steps of construction:

- (1) Draw BC = 4.8 cm
- (2) At B draw $\angle PBC = 60^{\circ}$
- (3) At C draw $\angle QCB = 75^{\circ}$

Meeting previous angle at A $\therefore \Delta ABC$ is required triangle.

- 5. Step of construction:
 - (1) Draw BC = 4.8 cm
 - (2) At B draw $\angle B = 90^{\circ}$
 - (3) With *C* as centre and radius 6.2 cm cut *BR* at *A*.

- (4) Join AC
 - \therefore $\triangle ABC$ is required triangle.
- **6.** If one a cute angle of right angled triangle is 30° then other acute angle is 60°.

Steps of construction:

(1) Draw BC = 5.6 cm

- (2) At B draw $\angle RBC = 60^{\circ}$
- (3) At C draw $\angle SCB = 30^{\circ}$

Meeting previous angle at A

- \therefore $\triangle ABC$ is required triangle.
- 7. Each acute angle of right angled triangle is 45°

Steps of construction:

- (1) Draw QR = 5.8 cm
- (2) At Q and R draw angle 45° each meeting each other at P.

 \therefore $\triangle PQR$ is required isosceles right angled triangle.

Mental Maths

- 1. three 2. induced angle 3. side 4. No
- 5. SAS 6. ASA 7. No 8. equilateral

13

Congruence

Exercise-13

- 1. (i) Yes the triangles are congruent by SSS congruence condition.
 - (ii) Yes the triangles are congruent by ASA congruence condition.
 - (iii) No the triangles are not congruent.
 - (iv) No the triangles are not congruent.
- 2. (i) Yes $\triangle ABC \cong \triangle PRQ$ by SAS

$$AB = PR, \angle B = \angle R, BC = QR$$

(ii) Not necessary

$$AB \neq PQ, \angle B = \angle R, BC = QR$$

(iii)
$$\angle B = 180 - (90 + 50)$$

$$\angle B = 40^{\circ}$$

No the triangles are not congruent.

(iv) Yes $\triangle ABC \cong \triangle PRQ$ By RHS

- \therefore $\angle A = \angle P, BC = QR, AB = PR$
- (v) Figure is according to given condition Yes, $\triangle ABC \cong \triangle ADC$ (By sss)

- \therefore AB = AD, BC = DC, AC = AC
- (vi) Yes $\triangle ABC \cong \triangle ABD$ (By RHS) $\therefore \angle ABC = \angle ABD = 90$

$$AC = AD$$

$$AB = AB$$

3. $\triangle AOB$ is not \cong to $\triangle EOD$

$$\therefore$$
 Only $\angle A = \angle E, \angle B = \angle D$

(alternte angles)

But no sides are equal

4. (i) $\angle ADB = \angle DBC$ (alternate angles)

In
$$\triangle DAB$$
 and $\triangle BCD$

$$AD = BC$$
 (given)

$$\angle ADB = \angle DBC$$
 (alternate angles)

$$BD = BD$$

$$\Delta DAB \cong \Delta BCD$$
 (By SAS)

5. In $\triangle AOB$ and $\triangle DOC$

$$\angle A = \angle D$$
 alternate angles

$$AB = CD$$
 common

$$\angle B = \angle C$$
 alternate angles

 $\Delta AOB \cong \Delta DOC$ by ASA

6. In $\triangle ABC$ and $\triangle DCB$

$$AB = DC$$
 (given)

$$AC = BD$$
 (given)

and
$$BC = BC$$

$$\therefore \quad \Delta ABC \cong \Delta DCB \quad \text{(By SSS)}$$

In $\triangle ABD$ and $\triangle DCA$

$$AD = AD$$

$$AB = CD$$

$$BD = AC$$

$$\Delta ABD \cong \Delta DCA$$
 (By SSS)

7. In $\triangle ABN$ and $\triangle ACM$

$$AB = AC$$
 (given)

$$\angle A = \angle A$$
 (Common)

$$AN = AM$$
 (given)

$$\Delta ABN \cong \Delta ACM \text{ (by SAS)}$$

$$\therefore BN = CM$$
 (CPCTC)

8. Yes,
$$\triangle LPQ \cong \triangle MPQ$$
 (By SSS)

$$\therefore$$
 $PL = PM$

$$PQ = PQ, LQ = MQ$$

9. In $\triangle PQR$ and $\triangle SQR$

$$PR = SR$$

$$\angle PRQ = \angle SRQ$$

$$QR = QR$$

$$\therefore \Delta PQR \cong \Delta SQR \text{ By } \mathbf{SAS}$$

- **10.** (i) Yes $\triangle ABC \cong \triangle CDA$
 - (ii) SSS congruence condition
 - (iii) Yes AC = AC (common)
- **11.** In $\triangle ABC$ and $\triangle DBC$

$$\angle A = \angle D = 90^{\circ}$$
 (given)
 $BC = BC$ (common)
 $AC = BD$ (given)

$$\Delta ABC \cong \Delta DBC \qquad \text{(by RHS)}$$

12.
$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$
 (given)

But $\triangle ABC$ not $\cong \triangle DEF$ because even in two equilateral triangles angles are equal but sides can be different.

- 13. (i) false (ii) true (iii) false (iv) false
- **14.** $\triangle ABD \cong \triangle ACD$ (by ASA)

$$\angle CAD = \angle BAD$$
 (angle bisector)
 $AD = AD$ (common)
 $\angle CDA = \angle BDA$ (angle bisector)

- 15. (i) they are of equal lengths.
 - (ii) their measure are equal.
 - (iii) they have the same side.
 - (iv) their dimensions are same.
 - (v) they have the same radii.

MCQs

(xi)

1. (c) 2. (c) 3. (a) 4. (c)

14 Symmetry

Exercise-14.1

- 1. H, I,N have rotational symmetry.
- 2. (i), (iii), (v), (vii), (ix) have rotational symmetry.
- 3. (i) 4 order (ii) 3 order (iii) 2 order (iv) 3 order (v) 6 order (vi) 4 order

Exercie-14.2

- 1. (i), (iv) (vi), (vii), (viii) have point symmetry.
- **2.** (i) The point of intersection of medians.
 - (ii) The mid point of the line segment
 - (iii) The point of intersection of diagonals.
 - (iv) The point of intersection of the medians.
 - (v) The point of intersection of the diagonals.
 - (vi) The point of intersection of the diagonals.
 - (vii) The centre of circle.
 - (viii) The point of intersection of the diagonals.

(xiii)

(xv)

MCQs

1. (a) 2. (c) 3. (d) 4. (b) 5. (d) 6. (b) 7. (a)

Mental Maths

- 1. Yes 2. No 3. 4 4. 4
- 5. rotational, 3 6. isosceles triangl

15

Three Dimensional Shapes

Exercise-15

- **1.** (i) Cube
 - (ii) Rectangulr pyramid
 - (iii) Triangular prism
 - (iv) Cone
- 2. Quadrilateral 2D Hexagon 2D Sphere 3D Prism 3D Circle 2D Pyramid 3D Triangle 2D Cylinder 3D
- Square 2D
 3. Tube light cylinder
 A playing circle cube
 Match box cuboid
 An orange sphere
 Joker's cap cone
 A Kalidascope triangular prism
- 4. (i) Prism

(ii) Cube

(iii) Pyramid

(iv) Cuboid

- **5.** 6
- 6. (i) LM is joined to OP
 - (ii) RS is joined to LY
- 7. Do yourself
- **8.** Do yourself
- 9. $A \rightarrow 2, B \rightarrow 3, C \rightarrow 1$
- 10. Cuboid= $8 \text{ cm} \times 4 \text{ cm} \times 4 \text{ cm}$
- 11. 24 cubes
- 12.

S. No.	Shapes	No. of edges	No. of faces	No. of vertices
1.	Cuboid	12	6	8
2.	Cone	1	2	1
3.	Cylinder	2	3	0
4.	Cube	12	6	8

MCQs

1. (a) 2. (d) 3. (a) 4. (c) 5. (b)

Exercise-16.1

- 1. (i) Perimeter of triangle = (10+7+6)cm = 23 cm
 - (ii) Perimeter of triangle = (5 + 5 + 5)cm = 15 cm
 - (iii) Perimeter of triangle = (4 + 5.6 + 4.3) cm = 13.9 cm
- (i) Perimeter of rectangle = 2(l+b)

$$= 2(10+5) \text{ cm} = 30 \text{ cm}$$

- (ii) Perimeter of square = $4 \times \text{side}$
 - $= 4 \times 2.5 \text{ cm} = 10$
- (iii) Perimeter of rectangle = 2(l+b)=2(20+25) $=2\times45=90\,\mathrm{cm}$
- (iv) Perimeter of square = $4 \times \text{side}$ $= (4 \times 15) \text{ cm} = 60 \text{ cm}$
- (i) Perimeter of rectangle = 2(l + b)

$$360 = 2[100 + b]$$

$$180 = 100 + b$$

$$80 \,\mathrm{cm} = b$$

(ii) Perimeter of rectangle = 2(l + b)

$$360 = 2[116 + b]$$

$$180 = 116 + b$$

$$64 \text{ cm} = b$$

(iii) Perimeter of rectangle = 2(l + b)

$$360 = 2[140 + b]$$

$$180 = 140 + b$$

$$40 \text{ cm} = b$$

(iv) Perimeter of rectangle = 2(l + b)

$$360 = 2(102 + b)$$

$$180 = 102 + b$$

$$78 \,\mathrm{cm} = b$$

4. : diagonal of squqre = $\sqrt{2}$ × side

$$10\sqrt{2} = \sqrt{2} \times \text{side}$$

$$10 \text{ cm} = \text{side}$$

Perimeter of square *:* .

$$=4 \times \text{side}$$

$$= 4 \times 10 = 40 \text{ cm}$$

(i) Diagonal of Rectangle

$$=\sqrt{l^2+b^2}$$

- $=\sqrt{16^2+12^2}$ $=\sqrt{256+144}$ $=\sqrt{400}$ $=\sqrt{20^2}$
- :. diagonal of rectangle = 20 cm
- (ii) Similarly, diagonal of Rectangle

$$= \sqrt{40^2 + 9^2}$$

$$= \sqrt{1600 + 81}$$

$$= \sqrt{1681}$$

$$= \sqrt{41^2}$$

- ∴ Length of diagonal of rectangle = 41 cm
- **6.** : Perimeter of building = 2(l+b)

$$320 = 2[125 + b]$$

$$160 = 125 + b$$

$$35 \,\mathrm{m} = b$$

- breadth of building $= 35 \,\mathrm{m}$
- 7. Perimeter of rectangular playground

$$=2(l+b)$$

$$=2[120+70]$$

$$=2(190)$$

$$=380\,\mathrm{cm}$$

8. Perimeter of rectangle

$$=2(l+b)$$

$$=2(l+3)$$

$$18 = 2l + 6$$

8 - 6

$$\frac{18-6}{2}=l$$

$$\frac{12}{2} = l$$

- l = 6
- Length of rectangle = $6 \, \text{cm}$
- 9. Distance travelled by a boy in going round a square = Perimeter of square

$$=4 \times \text{side}$$

$$=4 \times 20$$

- \therefore distance covered by a boy = 80 m
- 10. Perimeter of equilateral triangle

$$=3 \times \text{side}$$

$$= 3 \times 12.5 = 37.5 \,\mathrm{cm}$$

11. Perimeter of regular hexagon

$$=6 \times \text{side}$$

$$= 6 \times 8.3$$

$$=49.8 \text{ cm}$$

12. Perimeter of 8 sided polygon

$$= 8 \times \text{side}$$

$$53.6 = 8 \times \text{ side}$$

$$6.7 \text{ cm} = \text{side}$$

13. Wire required = Perimeter of park

$$=2(l+b)$$

$$=2[30+20]$$

$$=100 \, \text{m}$$

Cost of fencing = 15×100

14. Perimeter of triangle = a + b + c

$$= 5 + 3 + 7$$

$$=15 \,\mathrm{cm}$$

15. Perimeter of rectangular park

$$=2(l+b)$$

$$=2[200+150]$$

$$= 700 \, \text{m}$$

$$\therefore \quad \text{cost of fencing} = 20 \times 700$$

Exercise-16.2

1. We have $l = 240 \,\text{m}$

$$b = 75 \,\mathrm{m}$$

(a) Area of field $= l \times b$

$$=240 \times 75$$

$$=18000 \,\mathrm{m}^2$$

Cost of turfing = ₹ 18000×0.75

(ii) Perimeter of field = 2(l+b)

$$=2[240+75]$$

$$=2(315)$$

$$=630 \, \text{m}$$

Cost of fencing = 1.25×630

2. Let length of field = 3x

$$=2x$$

Area of field = $l \times b$

$$3456 = 3x \times 2x$$

$$3456 = 6x^2$$

$$576 = x^2$$

$$24^2 = x^2$$

$$24 = x$$

: length =
$$3 \times 24 = 72 \,\text{m}$$

breadth =
$$2 \times 24 = 48 \,\mathrm{m}$$

Fence for the field
$$= 2(l+b)$$

$$=2[72+48]$$

$$=2(120)=240 \,\mathrm{m}$$

Cost of fencing =
$$3.50 \times 240$$

= ₹ 840

3. Length of rectangular plot = $35 \,\mathrm{m}$

In
$$\triangle ABC$$
, Pythogoras theorem

$$(BC)^2 = (AC)^2 + (35)^3$$

$$(37)^2 = (AC)^2 + (35)^2$$

$$(AC)^2 = (37)^2 - (35)^2$$

$$(AC)^2 = 1369 - 1225$$

$$(AC)^2 = 144$$

AC = 12 m = breadth of rectangular plot

Now, Area of rectangular plot

$$= 35 \times 12 \text{ m}^2$$
$$= 420 \text{ m}^2$$

4. Diagonal of square = $\sqrt{2} \times \text{side}$

$$2.8 = \sqrt{2}$$
 side

$$\frac{2.8}{\sqrt{2}}$$
 = side

Area of square =
$$side \times side$$

$$=\frac{2.8}{\sqrt{2}}\times\frac{2.8}{\sqrt{2}}$$

$$=\frac{7.84}{2}=3.92\,\mathrm{m}^2$$

5. Perimeter of square field = $\frac{\text{total cost}}{\text{cost}}$

$$=\frac{1600}{0.80}$$

 $4 \times \text{Side of square} = 2000 \,\text{m}$

$$\therefore$$
 Side of square = 500 m

 \therefore Area of square = side²

$$=(500^2) \text{ m}^2$$

$$= 250000 \,\mathrm{m}^2$$

∴ cost of reaping $100 \,\mathrm{m}^2 = ₹ 0.60$

"
$$250000 \,\mathrm{m}^2 = \overline{\xi} \, \frac{0.60}{100} \times 250000$$

6. We have *ABCD* is a saree

$$AB = 500 \,\mathrm{cm}, BC = 130 \,\mathrm{cm}$$

$$EF = 500 - (25 + 25)$$
= 450
$$GF = 130 - (25 + 25)$$
= 80 cm

:. Area of border

= Area
$$ABCD$$
 - Area $EFGH$
= (500×130) - (450×80)
= 65000 - 36000 = 29000 cm²

Area of border = $29000 \,\mathrm{cm}^2$

Cost of weaving border

$$(100)^2 = ₹1$$

Cost of weaving border 29000 cm²

$$= \frac{1 \times \cancel{29000}}{\cancel{100}} = \cancel{?} \cancel{290}$$

$$= \cancel{?} \cancel{290}$$

7. EFGH is a grassy lawn

$$AB = 38 + (2.5 + 2.5) = 43 \,\mathrm{m}$$

$$BC = 25 + (2.5 + 2.5) = 30 \,\mathrm{m}$$

:. Area of path

$$= Ar ABCD - Ar EFGH$$

$$= 43 \times 30 - 38 \times 25$$

$$= 1290 - 950$$

Ar of path = $340 \,\mathrm{m}^2$

Cost of gravelling $1 \text{m}^2 = \text{\rotate{7}} 6.50$

8.

Area of Road

$$=$$
 (Area $EFGH + Area IJHK$)

- (Area of UVWX)

$$= [(70 \times 5) + (50 \times 5)] - (5 \times 5)$$

$$=(350+250)-25$$

Area of road =
$$600 - 25$$

$$= 575 \,\mathrm{m}^2$$

Cost of construction of 1m² road= ₹ 20

9. Let breadth of park = 5x

breadth of park =
$$2x$$

$$\therefore AB = 5x, BC = 2x$$

$$EF = 5x + (2.5 + 2.5) = 5x + 5$$

$$FG = 2x + (2.5 + 2.5) = 2x + 5$$

$$\therefore$$
 Ar *EFGH* – Ar of *ABCD* = 305

$$(2x + 5) \times (5x + 5) - 5x \times 2x = 305$$

$$10x^2 + 10x + 25x + 25 - 10x^2 = 305$$

$$35x = 305 - 25$$

$$35x = 280$$

$$x = 8$$

:. length of park = $5 \times 8 = 40 \text{ m}$ breadth of park = $2 \times 8 = 16 \text{ m}$ 10.

	D]	L F	ζ.	С		í
		W	2.5	V		0	
H E	1.8	• • •		1.8		G _Z	10
L	•	X		U		1	
	A]	[J	-	В	,	ļ
	←		-50				

Area of Roads

= Area of EGFH + Area of IJKL

- Area of UVWX

$$=50 \times 1.8 + 40 \times 2.5 - 2.5 \times 1.8$$

$$=90+100-4.5$$

$$=190-4.5$$

Area of Raods = $185.5 \,\mathrm{m}^2$

Area of Remaining portion

$$=50 \times 40 - 185.5$$

$$=(2000-185.5)$$
 m²

$$=1814.5 \text{ m}^2$$

Exercise-16.3

1. We have,

$$a = 3 \text{ cm}, b = 4 \text{ cm}, c = 5 \text{ cm}$$
∴
$$s = \frac{a+b+c}{2} = \frac{3+4+5}{2} = 6$$
∴
$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{6(6-3)(6-4)(6-5)}$$

$$= \sqrt{6 \times 3 \times 2 \times 1}$$

$$= \sqrt{6 \times 6}$$

$$r = 6 \text{ cm}^2$$

(ii) We have,
$$a = 50$$
 cm, $b = 48$ cm, $c = 14$ cm

$$\therefore s = \frac{a+b+c}{2} = \frac{50+48+14}{2}$$
$$= \frac{112}{2} = 56$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{56(56-50)(56-48)(56-14)}$$

$$= \sqrt{56 \times 6 \times 8 \times 42}$$

$$= \sqrt{172896}$$

$$A = \sqrt{(336)^2}$$

$$A = 336 \, \text{cm}^2$$

(iii) We have, a = 12 cm, b = 9.6 cm,

$$\therefore s = \frac{a+b+c}{2} = \frac{12+9.6+7.2}{2}$$
$$= \frac{28.8}{2} = 14.4$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{\frac{14.4(14.4-12)(14.4-9.6)}{(14.4-7.2)}}$$

$$= \sqrt{\frac{14.4 \times 2.4 \times 4.8 \times 7.2}{10000}}$$

$$= \sqrt{\frac{12 \times 12 \times 24 \times 24 \times 2 \times 2 \times 6 \times 6}{100 \times 100}}$$

$$= \sqrt{\frac{12 \times 24 \times 24 \times 2 \times 6 \times 6}{100 \times 100}}$$

$$A = \frac{12 \times 24 \times 2 \times 6}{100}$$

$$= 34.56 \text{ cm}^2$$

2.
$$AC^2 = AB^2 + BC^2$$

$$13^2 = AB^2 + 12^2$$

$$169 = AB^2 + 144$$

$$169 - 144 = AB^2$$

$$25 = AB^2$$

$$5^2 = AR^2$$

$$\mathcal{S} = AB$$

$$\therefore AB = 5 \text{ cm}$$

∴ Area of triangle =
$$\frac{1}{2} \times BC \times AB$$

= $\frac{1}{2} \times 12 \times 5$
= 30 cm^2

3. Area =
$$\frac{1}{2}$$
 × base × h

$$= \frac{1}{2} \times \cancel{12} \times 10$$

$$=60 \,\mathrm{cm}^2$$

Area of
$$\Delta = 60 \, \text{cm}^2$$

$$\frac{1}{2} \times 15 \times h = 60$$

$$h = \frac{60 \times 2}{15}$$

$$h = 8 \,\mathrm{cm}$$

: altitude to the other side is 8 cm.

4. We have,

B 20 C
$$a = 20, b = 42, c = 34$$

$$\therefore s = \frac{a+b+c}{2}$$

$$= \frac{20+42+34}{2}$$

$$= \frac{96}{2}$$

$$= 48$$

$$= 48$$

$$\therefore A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{48(48-20)(48-42)(48-34)}$$

$$= \sqrt{48 \times 28 \times 6 \times 14}$$

$$= \sqrt{112896}$$

$$A = \sqrt{336^2}$$

$$A = 336 \text{cm}^2$$
$$\frac{1}{2} \times 20 \times h = 336$$

$$h = \frac{336 \times 2}{20}$$

 $h = 33.6 \, \text{cm}$

5.

Area of parallelogram = base \times height $153 = 18 \times \text{height}$ $\frac{153}{18} = h$

$$8.5 \text{ cm} = h$$

 $8.5 \text{ cm} = h$

 \therefore distance from opposite side = 8.5 cm

We have, a = 6, b = 4, c = 5

$$S = \frac{6+4+5}{2} = 7.5$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{7.5(7.5-6)(7.5-4)(7.5-5)}$$

$$= \sqrt{7.5 \times 1.5 \times 3.5 \times 2.5}$$

$$= \sqrt{98.4375}$$

$$A = 9.92 \text{ cm}^2$$

= 9.92 cm²

$$\frac{1}{2} \times BC \times AN = 9.92$$

$$\frac{1}{2} \times 6 \times AN = 9.92$$

$$AN = \frac{9.92 \times 2}{6}$$

$$AN = 3.3 \text{ cm}$$

$$AN = 3.3 \text{ cm}$$

7. Area of equilateral triangle

rea of equilateral tria
$$= \frac{\sqrt{3}}{4} \text{ side}^{2}$$

$$= \frac{\sqrt{3}}{4} \times 6^{2}$$

$$= \frac{1.732 \times 36}{4}$$

$$= \frac{62.352}{4}$$
rea of equilateral tria

Area of equilateral triangle =15.588 cm²

$$=15.588 \text{ cm}^2$$

or =
$$15.6 \text{ cm}^2$$

or = 15.6 cm^2 8. Area of equilateral triangle = $81\sqrt{3}$

$$\frac{\sqrt{3}}{4} \operatorname{side}^2 = 81\sqrt{3}$$
$$\operatorname{side}^2 = 81 \times 4$$
$$\operatorname{side}^2 = 9^2 \times 2^2$$

$$side = 9 \times 2$$
$$side = 18$$

:. Perimeter of equilateral triangle

$$= 3 \times \text{ side}$$
$$= 3 \times 18 = 54 \text{ cm}$$

9.
$$BC^2 = AB^2 + AC^2$$

(By Pythagoras Theorem $= 4^2 + 3^2$

$$BC^2 = 25$$
$$BC^2 = 5^2$$

$$BC = 5$$

Area of
$$\triangle ABC = \frac{1}{2} \times AB \times AC$$

$$\frac{1}{2} \times BC \times AD = \frac{1}{2} \times AB \times AC$$
$$5 \times AD = 3 \times 4$$
$$AD = \frac{12}{5}$$

$$AD = 2.4 \text{ cm}$$

Area of
$$\triangle ABC = \frac{1}{2} \times 3 \times 4$$

$$=6$$
cm²

10. Let sides of triangle be 3x, 4x, 5x

$$\therefore \quad 3x + 4x + 5x = 48$$

$$12x = 48$$

$$x = 4$$

:. sides are =
$$3 \times 4, 4 \times 4, 5 \times 4$$

= 12, 16, 20

$$a = 12, b = 16, c = 20$$

$$s = \frac{12 + 16 + 20}{2}$$

$$s = 24$$

$$\therefore \text{ Area} = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{24(24-12)(24-16)(24-20)}$$

$$= \sqrt{24 \times 12 \times 8 \times 4}$$

$$= \sqrt{12 \times 2 \times 12 \times 2 \times 4 \times 4}$$

$$= 12 \times 2 \times 4$$

$$= 96 \text{cm}^2$$

11. Perimeter of equilateral triangle= 36

$$3 \times \text{side} = 36$$

 $\text{side} = 12$

Area of equilateral triangle

$$= \frac{\sqrt{3}}{4} \text{ side}^2$$

$$= \frac{\sqrt{3}}{4} \times 12^2$$

$$= \frac{1.732 \times 144}{4}$$

$$= \frac{249.408}{4}$$

$$= 62.3 \text{ cm}^2$$

:. Height of equilateral triangle

$$= \frac{\sqrt{3}}{2} \times \text{ side}$$

$$= \frac{1.732 \times 12}{2}$$

$$= 10.4 \text{ cm}$$

12. PR = 24 cm, ST = 6 cm, QU = 6 cm

Area of parallelogram PORS = Area $\Delta PST + \text{Area } \Delta ROQ \text{ (taking } RP \text{ as base)}$ $= \frac{1}{2} \times PR \times ST + \frac{1}{2} \times QU \times PR$

$$= \frac{1}{2} \times PR (ST + PR)$$

$$= \frac{1}{2} \times 24 \times (6+6)$$

$$= \frac{1}{2} \times 24 \times 12$$

$$= 12 \times 12 \text{ cm}^2$$

$$= 12 \times 12 \text{ cm}^2$$

= 144 cm^2

13.
$$DC = 8 \text{ m}, BC = 8 \text{ m}, AB = 12$$

Area of ABCE rectangle = Length \times Breadth

$$= (12 \times 8) \,\mathrm{m}^2$$

$$(:EC = 12 \text{ cm}, AB = 12 \text{ m})$$

Area of triangle = $\frac{1}{2}$ × Base × height

Area of
$$ADE = \frac{1}{2} \times DE \times AE$$

= $\frac{1}{2} \times 8 \times 8 \text{ m}^2$
= 32 m^2

Area of Quadrilateral ABCD $= (96+32) \,\mathrm{m}^2$ $=128 \,\mathrm{m}^2$

14.

Area of parallelogram = $AB \times DM$

$$\therefore AB \times DM = BC \times h$$

$$15 \times 4 = 8 \times h$$

$$\frac{15 \times \cancel{A}}{\cancel{S}} = h$$

$$7.5 \text{ cm} = h$$

: distance between shorter sides is 7.5 cm

15. Taking 20 cm as the base of the parallelogram, its height is 8 cm.

Area of parallelogram = base \times height

$$=160 \, \text{cm}^2$$

Let d cm be the distance between the shorter sides,

Then, area of the parallelogram

$$=(10 \times d) \text{ cm}^2$$

 $10d = 160$
 $d = 16$

Hence, the distance between the shorter sides = 16 cm.

Exercise-16.4

1. (i) Radius = $10 \, \text{cm}$

Circumference of circle =
$$2\pi r$$

= $2 \times \frac{22}{7} \times 10$

$$= 62.85 \text{ cm}$$

Area of circle =
$$\pi r^2$$

= $\frac{22}{7} \times 10 \times 10$
= 314.28 cm²

(ii) Radius = 14 cm

Circumference of circle = $2\pi r$

$$=2\times\frac{22}{7}\times14$$

$$=88 \,\mathrm{cm}$$

Area of circle =
$$\pi r^2$$

$$=\frac{22}{7}\times14\times14$$

$$=616 \,\mathrm{cm}^2$$

(iii) Radius = 5.6 cm

Circumference of circle = $2\pi r$

$$=2\times\frac{22}{7}\times5.6$$

$$=35.2 \text{ cm}$$

Area of circle =
$$\pi r^2$$

= $\frac{22}{7} \times 5.6 \times 5.6$

$$=98.56 \text{ cm}^2$$

(iv) Radius = $28 \, \text{cm}$

Circumference of circle = $2\pi r$

$$=2\times\frac{22}{7}\times28$$

$$=176 \,\mathrm{cm}$$

Area of circle =
$$\pi r^2$$

= $\frac{22}{7} \times 28 \times 28$

$$= 2464 \text{ cm}^2$$

2. (i) Circumference of circles = 132 cm

$$2\pi r = 132$$

$$2 \times \frac{22}{7} \times r = 132$$

$$r = \frac{132 \times 7}{22 \times 2} = 21 \quad \therefore \quad r = 21 \text{ cm}$$

Area of circle =
$$\pi r^2$$

= $\frac{21}{7} \times 21 \times 21 \text{ cm}^2$
= 1386 cm^2

(ii) Circumference of a circle = 88 cm

$$2\pi r = 88$$

$$2 \times \frac{22}{7} \times r = 88$$

$$r = \frac{88 \times 7}{22 \times 2} = 14 \text{ cm}$$

Area of a circle
$$= \pi r^{2}$$
$$= \frac{22}{7} \times 14 \times 14$$
$$= 616 \text{ cm}^{2}$$

(iii) Circumference of a circle = 176 cm

$$2\pi r = 176$$

$$\frac{2 \times 22}{7} \times r = 176$$

$$r = \frac{176 \times 7}{2 \times 22} = 28 \text{ cm}$$

Area of a circle
$$= \pi r^2$$

= $\frac{22}{7} \times 28 \times 28$
= 2464 cm^2

3. Area of circle = 144π

$$\pi r^{2} = 144 \,\pi$$

$$r^{2} = 144$$

$$r^{2} = 12^{2}$$

$$r = 12 \,\text{cm}$$
Area of circle = πr^{2}

$$= \frac{22}{7} \times (12)^{2}$$

$$= \frac{22}{7} \times 144$$

$$= \frac{3168}{7}$$

$$= 452.57 \,\text{cm}^{2}$$

4. We have, $c = 18\pi \text{cm}$

$$2\pi r = 18\pi$$

$$2\pi \times r = 18\pi$$

$$r = \frac{18\pi}{2\pi}$$

$$r = 9 \text{ cm}$$

$$Area = \pi r^2$$

$$= \pi (9)^2$$
$$= 81\pi \text{cm}^2$$

5. We have radius of earth = 6398

Length of equator of earth

= Circumference
=
$$2\pi r$$

= $2 \times \frac{22}{7} \times 6398$
= $2 \times 22 \times 914$
= 40216 km

6. We have, c = 44 cm

$$2\pi r = 44$$

$$2 \times \frac{22}{7} \times r = 44$$

$$r = \frac{\cancel{24} \times 7}{\cancel{2} \times \cancel{22}}$$

$$r = 24 \text{ cm}$$

diameter = 14 cm

7. Perimeter of square = Perimeter of circle

$$4 \times \text{side} = 2\pi r$$

$$4 \times 27.5 = 2 \times \frac{22}{7} \times r$$

$$\frac{4 \times 27.5 \times 7}{2 \times 22} = r$$

$$r = 17.5 \text{ cm}$$
Area of circle = πr^2

$$= \frac{22}{7} \times (17.5)^2$$

$$= \frac{22}{7} \times 17.5 \times 17.5$$

Area of circle $= 912.5 \text{ cm}^2$

8. We have, $R = \frac{11}{2}$ $r = \frac{3}{2}$

Area of shaded portion

= Area of ring
=
$$\pi [R^2 - r^2]$$

= $\frac{22}{7} \left[\left(\frac{11}{2} \right)^2 - \left(\frac{3}{2} \right)^2 \right]$
= $\frac{22}{7} [(5.5)^2 - (1.5)^2]$

$$= \frac{22}{7} (30.25 - 2.25)$$

$$= \frac{22}{7} \times 28$$

$$= 22 \times 4$$

Area of shaded portion = $88 \,\mathrm{cm}^2$

9. We have.

Circumfernece of inner circle = 88

$$2\pi r = 88$$

$$2 \times \frac{22}{7} \times r = 88$$

$$r = 7 \times 2$$

$$r = 14 \text{ cm}$$

Area of shaded portion = 346.5 cm^2

$$\pi(R^{2} - r^{2}) = 346.5$$

$$\frac{22}{7}[R^{2} - 14^{2}] = 346.5$$

$$(R^{2} - 196) = \frac{346.5 \times 7}{22}$$

$$= \frac{2425.5}{22}$$

$$R^{2} - 196 = 110.25$$
$$R^{2} = 306.25$$
$$R^{2} = (17.5)^{2}$$

10.

We have,

$$2r_{1} + 2r_{2} = 2.8$$

$$r_{1} + r_{2} = 1.4 \text{ cm} \qquad ...(1)$$

$$c_{1} - c_{2} = 0.88$$

$$2\pi r_{1} - 2\pi r_{2} = 0.88$$

$$2\pi (r_{1} - r_{2}) = 0.88$$

$$2 \times \frac{22}{7} (r_{1} - r_{2}) = 0.88$$

$$r_{1} - r_{2} = \frac{0.88 \times 7}{44}$$

$$r_{1} - r_{2} = 0.14 \qquad ...(2)$$

Adding (1) + (2)

$$(r_1 + r_2) + (r_1 - r_2) = 1.4 + 0.14$$

 $2r_1 = 1.54$
 $r_1 = 1.54$
 $r_1 = 0.77 \text{ m}$
Putting in (1)

$$0.77 + r_2 = 1.4$$

$$r_2 = 1.4 - 0.77$$

$$r_2 = 0.63$$

... radius of circles are 0.77m and 0.63 m.

11. We have, R = 21,

$$r = ?$$
∴ Area of shaded portion
$$= 770 \text{cm}^{2}$$

$$\pi (R^{2} - r^{2}) = 770$$

$$\frac{22}{7} [21^{2} - r^{2}] = 770$$

$$[441 - r^{2}] = \frac{770 \times 7}{22}$$

$$441 - r^{2} = 245$$

$$441 - 245 = r^{2}$$

$$196 = r^{2}$$

$$14^{2} = r^{2}$$

$$14 = r$$

∴ radius of inner circle = 14 cm

12.

Area of remaining portion = Area of square – Area of 4 quadrant $=80^2-4\times\left(\frac{\pi r^2}{4}\right)$ $=6400-\pi r^2$